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Minimum Time Required to Detect 
Population Trends: The Need for 
Long-Term Monitoring Programs

EASTON R. WHITE 

Long-term time series are necessary to better understand population dynamics, assess species’ conservation status, and make management 
decisions. However, population data are often expensive, requiring a lot of time and resources. What is the minimum population time series 
length required to detect significant trends in abundance? I first present an overview of the theory and past work that has tried to address this 
question. As a test of these approaches, I then examine 822 populations of vertebrate species. I show that 72% of time series required at least 
10 years of continuous monitoring in order to achieve a high level of statistical power. However, the large variability between populations 
casts doubt on commonly used simple rules of thumb, such as those employed by the IUCN Red List. I argue that statistical power needs to be 
considered more often in monitoring programs. Short time series are likely underpowered and potentially misleading.
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Observational studies and population time series   
have become a cornerstone of modern ecological 

research and conservation biology (Magurran et  al.  2010, 
Peters 2010, Hughes et  al.  2017). Long-term data are nec-
essary to both understand population dynamics and to 
assess species extinction risk. Some time series may now be 
considered long-term (e.g., continuous plankton recorder; 
Giron-Nava et al. 2017), but most are still short. Time series 
are typically short because of short funding cycles and 
typical experimental time frames (Field et al. 2007, Hughes 
et al. 2017).

How long of a time series is actually necessary? This 
question has important implications for both research and 
management (Nichols and Williams 2006). A short time 
series may lead to wrong conclusions, given large natural 
year-to-year variability (McCain et al. 2016). Managers need 
to know when action is needed for a population. Therefore, 
managers must understand when a population trend over 
time is actually meaningful. In addition, sampling is typi-
cally expensive; therefore, we also do not want to sample for 
longer than is necessary. For example, Gerber and colleagues 
(1999) investigated the minimum time series required to 
estimate population growth of the endangered but recover-
ing eastern North Pacific gray whale (Eschrichtius robustus). 
They used a long-term census to retroactively determine 
the minimum time series required to assess threat status. 
They found that only 11 years were needed, 8 years before 

the delisting decision was made. This highlights the impor-
tance of estimating the minimum time series required as an 
earlier decision would have saved time and money (Gerber 
et  al.  1999). Furthermore, waiting too long to decide an 
action can imperil a species for which management action 
could have been taken earlier (Martin et  al.  2012, 2017). 
Specific guidelines are therefore needed to determine when a 
time series is adequate. For example, the International Union 
for Conservation of Nature (IUCN) Red List Categories and 
Criteria suggest, under criterion A2, a species qualifies as 
vulnerable if it has experienced a 30% decline over 10 years, 
or three generations (IUCN 2012).

In past work, questions related to the minimum time 
series required to estimate trends in population size over 
time have been investigated (Wagner et al. 2009, Giron-Nava 
et al. 2017). For example, Rhodes and Jonzen (2011) exam-
ined the optimal allocation of effort between spatial and 
temporal replicates. Using simple populations models, they 
found that the allocation of effort depends on environmental 
variation, spatial and temporal autocorrelation, and observer 
error. Rueda-Cediel and colleagues (2015) also used a model-
ing approach but parameterized a model specific for a threat-
ened snail, Tasmaphena lamproides. They found that for this 
short-lived organism, 15 years was adequate to assess long-
term trends in abundance. However, these studies and other 
past work have typically only addressed theoretical aspects 
of monitoring design or have been focused on a few species.
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Statistical power is not a new tool (Cohen 1992, Thomas 
1997, Thomas and Krebs 1997, Gibbs et al. 1998), but it is 
still underappreciated in ecological research (Legg and Nagy 
2006). Therefore, I begin by reviewing key concepts of power 
analyses in relation to time series analysis. I then explain 
how simulation approaches have been used to estimate the 
minimum time required to estimate long-term population 
trends. Finally, I take an empirical approach to estimate the 
minimum time required for 822 animal populations.

Statistical power in time series analyses
An important step in experimental design is to determine 
the number of samples required. For any particular experi-
ment, four quantities are intricately linked: significance level 
(α), statistical power, effect size, and sample size (Legg and 
Nagy 2006). The exact relationships among these quantities 
depends on the specific statistical test. A type I error is a 
false positive, an incorrect rejection of a true null hypothesis. 
For example, if a time series was assessed as significantly 
increasing or decreasing—when there was no true signifi-
cant trend—this would be a false positive. The significance 
level (α, the probability of a false positive) is often set at .05 
(although this is purely historical; Mapstone 1995). A type II 
error (β) is a failure to detect a true trend or a failure to reject 
a false null hypothesis. Statistical power is 1 – β. Informally, 
statistical power is the probability of detecting a trend if it 
actually exists. The effect size is an estimate of the strength 
of a particular phenomenon.

Prior to an experiment, one could set appropriate levels of 
power and significance level and the effect size to estimate 
the sample size required for the experiment. This approach, 
however, is not straightforward for a time series or more 
complicated scenarios (Johnson et  al.  2015), because the 
data are clearly not independent.

In the context of time series data, sample size can be the 
number of study sites surveyed, the frequency of surveys 
per year, and the number of years surveyed. For example, 
Gibbs and colleagues (1998) examined how many times 
within a year a population needs to be sampled in order to 
ensure high statistical power. They found that the sampling 
intensity within a year differed greatly depending on the spe-
cies, because of differences in population variability. I use a 
similar approach but, instead, focus on the number of years 
required to estimate trends in abundance. In line with Gibbs 
and colleagues (1998), I would expect these results to be 
strongly dependent on population variability. Unlike Gibbs 
and colleagues (1998), I do not lump species together and, 
instead, study the differences between and within species.

Simulation approach
One approach to determining the minimum time series 
length needed is through repetitive simulations of a popula-
tion model (Gerrodette 1987, Gibbs et al. 1998). This is the 
same approach one might use in sample size calculations for 
any experimental design too complicated for simple power 
analyses (Bolker 2008, Johnson et  al.  2015). Essentially, a 

population model, with a selected set of parameter values, is 
simulated repetitively for a number of years. As an example, 
we can take the following population model for population 
size N at time t: 

N(t + 1) = N(t) + r(t) + ε, with ε ~ N(μ, σ)� (1)

where ε is a normally distributed random noise term with 
mean μ and standard deviation σ. The rate of growth (r) 
is the trend strength of the increase or decrease (i.e., the 
estimated slope from linear regression). Although there are 
many approaches to studying populations trends (Thomas 
1996), linear regression is the simplest and most commonly 
applied.

With regard to detecting time series trends, statistical 
power is the proportion of simulations in which the slope 
parameter from linear regression is significant at the .05 
threshold. A statistical power of .8 would indicate that, if 
there was a true trend in abundance, there would be a .8 
probability of detecting the trend. Values of .05 for the sig-
nificance level and .8 statistical power are purely historical 
(Cohen 1992). Therefore, it is important to also examine the 
effect of changing these values (supplemental figure  A4). 
Predictably, as the significance level decreases or the power 
required increases, more years of sampling are required 
(figure A4).

I set the significance level at .05 and then simulated the 
model in equation 1 (figure 1a). Statistical power increases 
with increases in the length of time sampled (figure  1b). 
Where power is greater than .8 (the dashed line), that is the 
minimum time required (Tmin) to be confident in the detec-
tion of a long-term trend in abundance. As was shown previ-
ously (Rhodes and Jonzen 2011, Rueda-Cediel et al. 2015), 
statistical power increases with larger trend strength and 
lower population variability (figure  1c and d). Simulation 
approaches can be useful before designing a monitoring 
program or when a realistic model exists for the population 
in question.

Any population model could be used in this approcah 
(e.g., see supplemental figures A6, A7). Ideally, the specific 
model choice should be tailored to the population of interest. 
As an example, I determined the minimum time required to 
estimate long-term population trends using a stochastic, 
age-structured model of lemon shark population dynam-
ics in the Bahamas (White et al. 2014). I found that over 27 
years of continuous monitoring were needed in this particu-
lar scenario (supplemental figure A7). Not surprisingly, the 
minimum time required for the lemon shark population was 
strongly dependent on model parameters (see figure  A7). 
Similarly, Rueda-Cediel and colleagues (2015) used a matrix 
model parameterized for a particular snail species. They 
used the model to argue that only 10–15 years were needed 
to accurately assess trends in abundance.

Empirical approach
As an empirical test of these ideas, I used a database of 2444 
population time series compiled by Keith and colleagues 
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(2015). The data are originally from the Global Population 
Dynamics Database (NERC Centre for Population Biology 
Imperial College 2010) and several other sources (Keith 
et  al.  2015). I filtered out short time series (less than 35 
years), and those with missing data, leaving 822 time series. 
The data includes information on 477 vertebrate species of 
birds (n = 747), mammals (n = 7), sharks (n = 2), and bony 
fish (n = 66).

I assumed that each time series was long enough to 
include all necessary information (e.g., variability) about the 
population. In other words, each time series was a represen-
tative sample. I then performed a type of retrospective power 
analysis—termed retrospective because the data has already 
been collected (Thomas 1997). I first took all possible con-
tiguous subsamples of each time series. For example, a time 
series of 35 years had 34 possible contiguous subsamples 
of length 2, 34 possible contiguous subsamples of length 
3, and continuing until 1 possible contiguous subsample 
of length 35 (Gerber et  al.  1999, Brashares and Sam 2005, 
Giron-Nava et al. 2017). The subsampling avoids some of the 
common pitfalls of retrospective power analyses (Thomas 
1997, Thomas and Krebs 1997). In line with the simulation 
approach, I determined the proportion of subsamples of a 
particular length that had estimated slope coefficients sta-
tistically different from zero. This proportion is a measure 
of statistical power. Finally, I determined which subsample 
length is required to achieve a certain threshold of statistical 

power (.8; Cohen 1992). The minimum 
subsampled length that met these crite-
ria was the minimum time series length 
required (Tmin). All analyses were con-
ducted in R (R Core Team 2017).

Estimates of the minimum time 
required
Across all the populations, I found an 
average minimum time series length 
required (Tmin) of 15.9 (standard devia-
tion = 8.3), with a wide distribution 
(figure  2b). Approximately, 72% of the 
populations required at least 10 years 
of monitoring. Estimates of Tmin varied 
between biological class (figure 2a). Ray-
finned fish (class Actinopterygii) typi-
cally had estimates of Tmin over 20 years. 
Birds (class Aves) had a much wider 
distribution of Tmin, but usually required 
fewer years of sampling. The wider dis-
tribution is probably due in part to the 
larger number of Aves samples compared 
with other classes. Differences between 
these classes can be partly explained by 
differences in variability in population 
size and strength of trends in abundance 
(supplemental figure A3).

This time frame is in line with past 
work on a short-lived snail species (Rueda-Cediel et al. 2015) 
and a long-lived whale species (Gerber et  al.  1999). Hatch 
(2003) used seabird monitoring data to estimate minimum 
sampling requirements. He found that the time required 
ranged from 11 to 69 years, depending on species, trend 
strength, and study design. All of this past work has been 
limited to a small number of species. This article is the first 
attempt to document the minimum sampling requirements 
for such a wide diversity and number of species.

Correlates for minimum time required
The minimum time series length required was strongly 
correlated with trend strength (i.e., the estimated slope 
coefficient from linear regression), coefficient of variation 
in population size, and autocorrelation in population size 
(figure 3a–c). All three of these explanatory variables were 
significant and had large effect sizes (see supplemental 
table  A1). Combined, trend strength, coefficient of varia-
tion in population, and autocorrelation account for 75.1% of 
the explained deviance (Zuur et al. 2009) in minimum time 
series length required. Therefore, by knowing these three 
aspects of a time series, a reasonable estimate for the mini-
mum time series length required can be made.

There was life-history information available (Myhrvold 
et  al.  2015) for 547 populations representing 315 different 
species, all of which were birds (Aves class). Some life-
history traits were significant predictors for the minimum 
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Figure 1. (a) Example of a simulated time series for 40 replicates.  
(b) Statistical power versus the simulated time series length. The horizontal, 
dashed line is the desired statistical power of .8. The vertical, dashed line is the 
minimum time required to achieve the desired statistical power. (c) Minimum 
time required (Tmin) for simulations with different values of the trend strength 
(r) and σ = 5.0. (d) Minimum time required for different levels of population 
variability σ and r = 1.5. In each case, the minimum time required is the 
minimum number of years to achieve .8 statistical power given a significance 
level of .05.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article-abstract/69/1/40/5195956 by guest on 19 August 2019



Forum

https://academic.oup.com/bioscience 	 January 2019/ Vol. 69 No. 1 • BioScience   43   

time required (figure  3d–h; supplemental tables A2 and 
A3). However, even combined, all five of the life-history 
traits accounted for only 5.99% of the explained devi-
ance in minimum time series length required. In addition, 
when accounting for trend strength, coefficient of varia-
tion, and autocorrelation, no life-history traits were signifi-
cant predictors of the minimum time required (table  A3). 
Because of the shared evolutionary history of populations 
and species, this lack of independence may affect regres-
sion results (Felsenstein 2008). I used the APE package 
(Paradis et al. 2004) in R to run phylogenetically corrected 
regressions within the Aves class. The overall results were 
not altered when accounting for phylogeny (supplemental 
figure A10).

I initially hypothesized that species with longer lifes-
pans or generation times might require a longer sampling 
period. This result could have been caused by at least two 
factors. First, the data I used might not have included a 
diverse enough set of species with different life-history 
traits. Second, the question I posed, whether a population 
is increasing or decreasing, was specifically concerned 
with population trends over time. Therefore, life-history 
characteristics may be more important for other questions 
more closely tied to species biology. For example, Blanchard 
and colleagues (2007) used detailed simulations of spatially 

distributed fisheries to compare sur-
vey designs. They found that statisti-
cal power depended on temperature 
preferences and the degree of popu-
lation patchiness, presumably because 
the survey designs included a spatial 
component.

Evaluating the IUCN criteria
I examined a subset of populations 
with observed declines of 30% or 
greater over 10 years, qualifying all of 
them as vulnerable under IUCN crite-
rion A2 (IUCN 2012). This resulted in 
162 populations. I then compared the 
minimum time required to achieve .8 
statistical power (Tmin) to the mini-
mum time required under the IUCN 
criteria (figure  4). For populations 
below the identity line in figure  4, 
IUCN criteria would require more 
sampling compared to estimates for 
Tmin. Furthermore, populations above 
the identity line are cases in which the 
IUCN criteria would classify a popula-
tion as vulnerable despite not having 
sampled enough years to achieve high 
statistical power (figure 4). The silhou-
ettes on figure 4 highlight that species 
with long generation times had larger 
discrepancies between Tmin and the 

minimum time required for IUCN assessments (supple-
mental figure A5).

For the populations I examined, the IUCN criteria may 
be overly simplistic (figure  4). For many populations, the 
IUCN criteria suggest that more years than necessary are 
required to assess a population as vulnerable. Conversely, for 
other populations, the IUCN criteria suggest sampling times 
that are less than the minimum time required for statistical 
power. This suggests that the IUCN criteria are probably too 
simplistic, because the minimum time required does not 
correlate with generation time or other biological covari-
ates (figure 3d–h). Instead, assessments of long-term trends 
could rely on one of two approaches. First, a specific model 
could be built and simulated for the species of interest. An 
estimate of the minimum number of years for a particular 
threshold of statistical power could then be determined 
(e.g., see supplemental figure A7). Alternatively, if one had 
estimates of the population trend, the population variabil-
ity, and the autocorrelation, it would then be possible to 
estimate the minimum number of years required using the 
regression model provided in table A1.

Related questions
Keith and colleagues (2015) studied the same data set to 
determine how predictive a current population trend was of 
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Figure 2. (a) Distributions of the minimum time required for populations from 
four different biological classes. (b) Distribution of minimum time required 
for all populations regardless of biological class. The minimum time required 
calculation corresponds to a significance level of .05 and statistical power of .8.
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future trends. They showed that, for many species (except 
birds), past declines were actually more predictive of sub-
sequent increases. This shows the nonlinear nature of many 
time series. They do not explicitly determine the minimum 
time required for a population trend to predict a longer-term 
trend. Therefore, this article adds to their work by determin-
ing the minimum number of years required to determine a 
population trend. Many populations require far greater than 
the IUCN rule of 10 years (or three generations) employed 
by Keith and colleagues (2015).

An important related idea is the optimal allocation of 
sampling effort spatially. In a theoretical investigation of this 
question, Rhodes and Jonzen (2011) found that the optimal 
allocation of sampling depended strongly on temporal and 
spatial autocorrelation. If spatial population dynamics were 
highly correlated, it was better to sample more temporally 
and vice versa. The empirical data supports this idea as 

populations with strong temporal auto-
correlation needed fewer years of sam-
pling (figure 3). Morrison and Hik (2008) 
also studied the optimal allocation of 
sampling effort in space versus time but 
used empirical data from a long-term 
survey of the collared pika (Ochotona 
collaris) in the Yukon. They found that 
surveys less than 5 years may be mis-
leading and that extrapolating from one 
population to another, even when nearby 
geographically, may be untenable.

Seavy and Reynolds (2007) asked 
whether statistical power was even a useful 
framework for assessing long-term popu-
lation trends. They examined 24 years 
of census data on red-tailed tropicbirds 
(Phaethon rubricauda) in Hawaii. They 
always had .8 statistical power to detect a 
50% decline over 10 years. Therefore, they 
cautioned against only using power analy-
ses to design monitoring schemes and, 
instead, argued for metrics that would 
increase precision: improving randomiza-
tion, reducing bias, and increasing detec-
tion probability. Power analyses should not 
be the only consideration when design-
ing monitoring schemes. However, unlike 
Seavy and Reynolds (2007), the present 
results show that at least 10 years of moni-
toring were required for 72% of popula-
tions. Furthermore, 30.7% of populations 
required at least 20 years of monitoring.

Limitations
This study has some limitations in deter-
mining the minimum time series length 
required. First, the minimum time esti-
mated is particular to the specific ques-

tion of interest. Specifically, I examined the minimum time 
required to determine whether a long-term linear popula-
tion trend exists. The minimum time required would differ 
if one was interested in examining nonlinear trends (Keith 
et al. 2015), seasonal dynamics (White and Hastings 2018), 
assessing multiple populations, or answering a different 
question altogether. The empirical approach presented in 
the present article was also limited to only 477 populations 
of vertebrate species. An additional complication is that the 
subsampling of the full time series allows for estimates of 
power, but the individual subsamples are clearly not inde-
pendent of one another. In an ideal setting, a specific popula-
tion model would be parameterized for each population of 
interest. Then, model simulations could be used to estimate 
the minimum time series required to address each specific 
question of interest. Clearly, this is not always practical, 
especially if conducting analyses for a wide array of species.
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Figure 3. Minimum time required to estimate change in abundance correlated 
with (a) trend strength (absolute value of slope coefficient estimated from 
linear regression), (b) coefficient of variation in interannual population size, 
(c) temporal lag-1 autocorrelation, (d) generation length (years), (e) litter 
size (n), (f) log adult body mass (grams), (g) maximum longevity (years), and 
(h) incubation (days). The lines in each plot represent the best fit line from 
linear regression.
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Conclusions
Power analyses are not a novel aspect of ecological research 
(Thomas and Krebs 1997, Legg and Nagy 2006). However, 
power analyses are still underused, especially in the context 
of time series analyses. This is the first article to address 
such a large number of populations (822) to determine the 
minimum time series length required to detect population 
trends. The present study goes beyond previous work that 
was focused either on theoretical investigations or on a 
limited number of species. I show that to identify long-term 
changes in abundance, on average 15.91 years of continuous 
monitoring are often required (figure 2). More importantly, 
however, there is wide distribution of estimated minimum 
times. Therefore, it is not wise to use a simple threshold 
number of years in monitoring design. Furthermore, con-
trary to my initial hypotheses, minimum time required did 
not correlate with generation time or any other life-history 
traits (figure  3d–h). These results are evidence against 
overly simplified measures of minimum sampling time 
based on generation length or other life-history traits, such 
as those of the IUCN criteria (figure 4). Instead, simulation 
models or power analyses should be tailored to particular 
populations.

The design of monitoring programs should include cal-
culations of statistical power, the allocation of sampling 
in space versus time (Larsen et  al.  2001, Rhodes and 
Jonzen 2011), and metrics to increase precision (Seavy and 
Reynolds 2007). Ideally, a formal decision analysis to evalu-
ate these different factors would be conducted to design 
or assess any monitoring program (Hauser et  al.  2006, 
McDonald-Madden et  al.  2010). This type of formal deci-
sion analysis would also include information on the costs 

of monitoring. These costs include the actual costs of sam-
pling (Brashares and Sam 2005) and the ecological costs of 
inaction (Thompson et al. 2000).

For many populations, short time series are probably 
not reliable for detecting population trends. This result 
highlights the importance of long-term monitoring pro-
grams. From both a scientific and management perspective, 
estimates of the minimum time required are important. If 
a time series is too short, we lack the statistical power to 
reliably detect population trends. In addition, a time series 
that is too long may be a poor use of already limited funds 
(Gerber et al. 1999). Furthermore, more data is not always 
best in situations in which management actions need to be 
taken (Martin et al. 2012, 2017). When a population trend 
is detected, it may be too late for management action. In 
these situations, the precautionary principle may be more 
appropriate (Thompson et  al.  2000). Future work should 
examine other species, with a wider range of life-history 
characteristics. In addition, similar approaches can be used 
to determine the minimum time series length required to 
address additional questions of interest.
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