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Abstract 

We review the role of chaos and the study of chaos in ecology. We use 
sensitive dependence on initial conditions as the best heuristic definition of 
chaos. This definition forms the common theme for our review of approaches 
for demonstrating the importance of chaos in ecology. We emphasize that this 

*The us government has the right to retain a nonexclusive, royalty-free license in and to any 
copyright covering this paper. 
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2 HASTINGS ET AL 

definition of chaos can include the effects of noise, and that there is no 
dichotomy between stochasticity and chaos. 

We review three classes of approaches for studying chaos in ecology: 
models , analysis of time series, and experiments . Current ideas from modelling 
approaches demonstrate the plausibility of chaos. New approaches for 
analyzing time series are based on using the presence of a positive Lyapunov 
exponent to indicate sensitive dependence on initial conditions . The methods 
can deal with relatively short time series that include the effects of noise, with 
chaotic dynamics appearing in at least some cases. Experimental work is just 
beginning., spurred by modelling results and the new methods for analyzing 
times series. We suggest directions for further work in each of these 
approaches. 

INTRODUCTION 

May's early work on discrete time models in population ecology (85-87, 92) 
was one of the first studies of chaos in any discipline. These papers attracted 
a tremendous amount of attention among theoreticians and workers in chaos 
in other disciplines, but chaos as an ecological phenomenon was overlooked 
by most n;scarchers for a number of years . An early paper by Hassell et al 
(58) may have been influential in this: their work lent support to the view that 
chaos was unimportant in natural populations. However, Schaffer & Kot 
( 1 24-129, 1 3 1 )  emphasized the possibility of chaos in ecology and rekindled 
interest in the topic . Chaos in ecology has been the subject of several recent 
reviews (39, 50, 8 1, 82, 88, 90, 1 19, 1 30). Despite these efforts, we assert 
that the role of chaos in the study of ecology needs to be still further clarified. 
Part of the need arises because a clear definition of chaos is not part of the 
training of most ecologists, especially those without a heavy theoretical bent. 
The inaccessibility of the technical literature renders entry into the field 
virtually impossible for nonspecialists. More accessible literature is ,  however, 
beginning to appear-we strongly recommend the "picture" book by Abraham 
& Shaw (3) and the recent volume by Peitgen et al ( 1 1 0) to any reader who 
wants an introduction to chaotic dynamics . 

The best definition of chaos is that chaos is a sensitive dependence on initial 
conditions (and not just for some special initial conditions), a point emphasized 
by Ruelle ( 1 20, 1 2 1 ) .  We make this definition more formal below, but even 
the verbal definition we have just given allows us to explore further what 
chaos is and what chaos is not, and to explain why the study of chaos in 
ecology is important. Finally, we proceed from these topics to describe what 
we believe will be the most successful approaches for detecting chaos in natural 
ecological systems. We offer ways to answer the question posed in the title,  
rather than the answer itself. 

Our assl�rtion that the role of chaos in ecology is not clearly defined follows 
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CHAOS IN ECOLOGY 3 

from our belief that equilibrium concepts, other than those approaches focusing 
on chaos explicitly, continue to dominate ecological thinking (30) . This 
equilibrial view may have been influenced by the most common approach 
used in theoretical ecology during the past 20 years, as emphasized in the 
work of May (84). (May was, however, one of the first to point out difficulties 
with an overemphasis on equilibria-85-87 , 92.) In this framework, the focus 
is on simple deterministic difference or differential equations describing the 
dynamics of population sizes. A natural first line of investigation for such 
models is finding equilibria-i.e.  population sizes that do not change through 
time-and determining their stability . 

Underlying the focus on stable equilibria is the assumption that the 
communities we observe in nature correspond, at least loosely, to stable 
equilibria of the model systems. Prediction of long time behavior is based on 
the notion of approach to stable equilibria. In such systems, the precise value 
of initial conditions typically is unimportant. 

In contrast, for chaotic systems, asymptotic solutions have the property that 
two points lying close to each other will, in general , diverge and spread apart 
over time. Thus , in chaotic systems, predictions can be made over short time 
scales because the dynamics are deterministic . However, predictions cannot 
be made over a long time scale . This inability to predict over the long term 
is the hallmark of chaos. We define this property below by saying that the 
system has a positive Lyapunov exponent, which is a measure of the rate of 
spread of two nearby initial conditions. Lyapunov exponents represent a 
natural extension to more complex solutions of eigenvalues evaluated near an 
equilibrium. We define and discuss Lyapunov exponents in more detail below. 

Care should be taken in understanding the assertion of a lack of predictability 
over long time scales. First, the system has an attractor, a concept we define 
formally below, so solutions (i .e. population sizes) will remain between upper 
and lower bounds. Second, we argue below that this lack of predictability in 
itself is not a good basis for detecting chaos in observed time series, although 
calculation of the Lyapunov exponent is an appropriate approach. 

Are endeavors to find chaos in ecological systems likely to succeed? Several 
methods, each with its own advantages and disadvantages, can be used to 
answer this question. These techniques can be classified along a continuum, 
depending on both the certainty one has in a model for the system under 
consideration and the data that are available. Toward one end are methods 
that involve estimating the parameters of simple population models from 
experiments and observations, and then observing the dynamic behavior of 
the parameterizcd model (58, 153) . The results obtained usually depend 
critically upon the choice of the model (96). For this approach to be valid, 
great confidence is required in the biological realism of the chosen model. 
The primary advantage of this method is that a time series of data is not 
required. 
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4 HASTINGS ET AL 

A related approach, which would offer strong support for the existence of 
chaos in natural systems, would be to show that chaos exists for a wide range 
of reasonable models (with sensible parameter values) depicting ecological 
interactions. The contention among physical scientists has been that chaotic 
dynamics are likely to be the rule rather than the exception in the nonlinear 
models which describe many physical systems ( 1 10) .  We argue that this is 
also likely to be true for multi species models in ecology. 

A second approach in the middle of the continuum is based on fitting a 
series of related models to the data from a time series. One then chooses the 
"best" model and uses it to characterize the dynamics as chaotic or nonchaotic 
(e.g. by calculating the largest Lyapunov exponent). We discuss this approach 
in great detail below. This approach can be applied to some of the longer time 
series collected in ecology---on the order of 50 data points or fewer. 

At the other end of the continuum of approaches for studying chaos, one 
could try to calculate the Lyapunov exponent from the data directly,  an 
approach used by physical scientists who may have time series of 1000 or 
more points . This requires more data than the approach just outlined, but 
makes somewhat fewer assumptions. Calculating Lyapunov exponents directly 
from data requires a longer time series than ecologists typically can gather 
and assumes that stochasticity plays a limited role . 

The determination of evidence for chaos from time series is an extremely 
active area of research, as summarized in other recent reviews emphasizing 
applications to physical sciences (1, 26). Almost certainly, new and more 
effective methods will be discovered in the next few years. Even now, 
however, methods for detecting chaos can be applied successfully to relatively 
short data series. Therefore, attempts to detect chaos in ecological systems. 
are likely to yield new insights into the behavior of natural systems. 

CHAOS: CONCEPTIONS AND MISCONCEPTIONS 

It is necessary to have both an intuitive understanding of chaos and precise: 
definitions before examining the role of chaos in the dynamics of natural 
popUlations . We begin with both an intuitive and a formal definition of chaos, 
and a disc:ussion of characteristics of the consequences of chaotic dynamics 
that are important for ecologists . 

A Definition of Chaos 

The simplest and most intuitive definition of chaos is extreme sensitivity to 
initial conditions. If a system has chaotic dynamics, then the difference: 
between the trajectories of two populations that have slightly different initial 
conditions grows until this difference is essentially as large as the variation 
in either trajectory . The difference between trajectories grows exponentially 
(as in simple exponential growth) through time. In other words, if there is an 
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CHAOS IN ECOLOGY 5 

error in the determination of the initial conditions, the error grows until the 
error is as large as the signal . 

DEFINITION OF AN ATIRACTOR To define chaos precisely, we need to make 
formal the definition of an attractor. First, we introduce the concept of phase 
space (3, pp. 38-41) .  In dynamic models equilibria often are depicted using 
phase space diagrams in which the size of one population is plotted against 
the sizes of a second and third population, without explicitly including the 
time axis. Thus, in phase space, an equilibrium consists of a single point. 
More complex solutions that appear in ecological models are limit cycles, 
which are represented by closed curves in phase space. Still more complex 
are quasiperiodic solutions composed of periodic variation with two or more 
incommensurate frequencies, so in phase space solutions trace out the surface 
of a "doughnut," and the time series for any single dependent variable exhibits 
oscillations on fast time scales within an oscillating envelope on a slower time 
scale. The most complicated solutions such as those that arise in chaos typically 
will have more complex geometrical shapes in phase space. 

An attractor is a set of points in phase space (e.g.population sizes in a 
model) that represent a stable set of final dynamics for the system. These 
dynamics are final in three senses . First, once the state of the system or model 
is in this set, it does not leave this set. Second, all points of the set are reached. 
Finally, any trajectory starting near enough to the attractor approaches the 
attractor. For a simple discrete time model , depending on the parameters, the 
attractor can be a single point (an equilibrium), two points (a two-point cycle), 
four, eight, or a larger finite number of points (a more complex cycle), a 
closed curve, or a chaotic attractor. Chaotic attractors of deterministic systems 
also are usually strange attractors , which are defined below. Likewise, for a 
continuous time model , attractors can be simple points, limit cycles, or more 
complex. 

DEFINITION OF L Y APUNOV EXPONENTS The notion of exponential divergence 
can now be quantified using the concept of a Lyapunov exponent. Suppose 
that a point, p, (i .e a vector of population levels) lies on the attractor of a 
system. Consider what happens to a small cloud of possible population levels 
near p. Follow both p and the cloud of nearby initial conditions through time 
as the population levels change according to the model. The distance from p 

to points in the cloud will either grow or shrink. The (long-term) average rate 
of change of this distance can be decomposed into rates of (exponential) change 
along principal axes in the cloud of points. Each one of these rates of change 
is a Lyapunov exponent. Thus there are as many Lyapunov exponents as there 
are variables in the phase space (in differential equation or difference equation 
models) . 
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6 HASTINGS ET AL 

DEFINITION OF CHAOS USING L Y APUNOV EXPONENTS The attractor is chaotic 
if (and onlly it) at least one of the Lyapunov exponents is positive ( 1 20,  1 2 1 ) .  
This corresponds to the intuitive definition used earlier: points in the cloud 
near p will eventually diverge . (Note that in continuous time differential 
equation systems there must also be at least one negative Lyapunov exponent 
for the attractor to attract.) 

The definition of Lyapunov exponents , and thus of chaos, can be extended 
to include noisy systems (33 ,  69), which is of vital importance when 
describing natural populations .  In fact, stochasticity can change a system from 
the nonchaotic regime to the chaotic regime or vice versa, as has been 
demonstrated for some epidemiological models ( 1 15) .  The Lyapunov expo­
nent is still defined as the average rate of trajectory divergence caused by the 
endogenous component, but now, using two trajectories that start near each 
other and that are affected by the identical sequence of random shocks. The 
relation of this definition to the more familiar features of strictly deterministic 
chaos (e.g .  fractal attractors) is presented graphically in ( 1 03).  

Under this definition , the Lyapunov exponent, x., tells us whether the 
endogenous part of the mixed deterministic/stochastic system amplifies or 
dampens over time the effects of exogenous perturbations. A chaotic system 
(X. > 0) is a "noise amplifier": the effects of perturbations are compounded 
and cannot be ignored in predicting the future state of the system. A nonchaotic 
system (X. < 0) is a "noise muffler': the effects of a perturbation are transient 
and asymptotically have no effect on the system's long-term dynamics. Recent 
advances now make it possible to study chaos in systems that include 
stochastic components. 

CHARACTERISTICS OF CHAOS Another characteristic of chaotic behavior is the 
existence of an attractor to which all sufficiently nearby solutions converge, 
given sufficient time. Thus, a chaotic system is stable (which does not mean 
that an equilibrium is approached) by its very definition. Further, if population 
levels on the attractor remain sufficiently far from zero, the system may persist 
indefinitely even though the population levels fluctuate widely. 

Another typical characteristic of chaotic solutions is the geometric form of 
the attractors . The attractors typically are twisted and "strange," meaning that 
they have fractional (fractal) dimension, although this is not necessarily the 
case. The dimension of an attractor is typically computed using an algorithm 
(5 1 ,  52) based on the notion that the fraction of points on the attractor that 
are within E of any specified point on the attractors proportional to E

d
, where 

d is the dimension. For a deterministic chaotic attractor, the dimension (i.e .  
the so-caned fractal dimension) would typically be  a fraction (e.g. 1 . 26 rather 
than 1 or 2), whereas for a stochastic system, the dimension would typically 
be equal to the dimension of the phase space . Computation of the dimension 
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CHAOS IN ECOLOGY 7 

of an attractor was the first practical method of data analysis for determining 
if a system was chaotic, but more recent work has shown that other methods 
are more useful . 

INVARIANTS The two characteristics of chaotic systems just noted, dimension 
and Lyapunov exponents, are both invariants: they are unchanged by nonlinear 
coordinate changes. Invariants are important since they are the quantities most 
appropriate to use when attempting to characterize systems as chaotic or not. 

Approaches for Detecting Chaos 

Chaos can be detected using several approaches we discuss below; visual 
inspection of time series is not a reliable method for detecting chaos. Two 
factors may be responsible for the notion that chaos can be detected by visual 
means . First, graphs of population densities versus time in chaotic systems 
appear to lack a perceptible pattern. This has led to the origin of an "intuitive. 
but technically vague" definition of chaos that refers to the presence of 
irregular oscillations ( 1 1 9) .  Second, some of the tools used to analyze chaos 
are graphical . However, visual methods can be misleading and may be 
insufficient to distinguish between chaos and stochasticity. We demonstrate 
this below. 

Chaos and Stochastic Dynamics 

Several prevalent misconceptions about chaos pertain to its relationship to 
stochastic behavior. One such misconception either equates chaos and noise, 
or includes stochasticity as a special type of chaotic behavior. In reality, chaos 
and stochasticity are not equivalent: not only do the underlying mechanisms 
differ, but the consequences for observers are very different. In deterministic 
systems, if information is complete, then predictions made from the governing 
equations will be perfect. Chaotic systems are predictable over short time 
scales because they are deterministic; the lack of predictive power over long 
time scales stems from lack of complete information about the exact location 
of initial conditions. In contrast, systems that are stochastic are unpredictable 
over any time scale because of the probabilistic nature of the components. 
Further, systems can have endogenous dynamics that are chaotic in the 
presence of exogenous stochastic perturbation. Such interaction between 
systems with chaotic dynamics and stochasticity leads to new and interesting 
behavior (33 , 1 14, 1 15) which we discuss below. 

So ... Why Bother? 

To many ecologists, investigating chaos and dynamical systems may seem 
like an esoteric fad pursued only by theoreticians suffering from a severe case 
of physics envy (although ecologists did it first) . We strongly believe that the 
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8 HASTINGS ET AL 

study of chaos will yield important insights for ecologists. First, most natural 
systems and the interrelationships therein are too complex to be easily 
compreheillsible. In such cases, models and quantitative methods are useful 
tools for synthesizing and organizing observations about nature. Historically, 
ecological models ignored nonlinear effects in per capita growth rates because 
of the analytical tractability of linear models. The analyses of these models 
have been based on the notion that the communities observed in nature 
correspond to stable equilibria in these models,  e .g.  (112). However, nonlinear 
effects are realistic, and the evidence for equilibrium behavior is inconclusive 
(30) . Including nonlinear effects can make substantial qualitative changes in 
behavior, including the appearance of chaos , even in continuous time models. 
Thus, ecological paradigms based on models that assume linearity or on 
stability analyses of equilibrium points should be regarded with caution, a 
point emphasized early on in the development of the subject (87, 92). 

The premise that ecological phenomena are inherently nonlinear (e.g. 
saturating predation rates and Allee effects) implies that the existence of 
complex dynamics in natural systems cannot be ruled out. Recent theoretical 
advances render application of dynamical systems theory in ecology more 
feasible. The application of these tools to a broad spectrum of formulations 
used to describe ecological phenomena has led to the observation of chaotic 
dynamics in a wide variety of models . 

Second, the existence of chaos in the models suggests that examining data 
on the dynamics of natural populations may be worthwhile. Here, time series 
approache:s are becoming better suited for application in ecology . The earliest 
methods used to study chaos in empirical time series were developed for 
physical applications and assume noise-free dynamics and perfectly accurate 
data. Ecologists cannot make these assumptions . Uncritical use of purely 
deterministic models has contributed to a rejection of nonlinear dynamics 
ideas by many ecologists, e .g.  (57). Ecological applications require methods 
that can incorporate nonlinearity and dynamical noise or that are robust to the 
effects of noise. Such methods have been developed. Thus, ecologists will 
be able to understand the relative roles of deterministic and stochastic forces 
in determining the apparently irregular dynamics of most natural systems (30, 
50). 

Finally., the distinction between stochastic and deterministic dynamics has 
important practical applications . If fluctuations in population sizes are driven 
primarily by deterministic factors, and if those factors are understood, then 
the dynamics are predictable over short time scales. Management of such 
populations is feasible. On the other hand, if fluctuations are driven primarily 
by exogenous stochastic forces, then prediction and management become 
much more difficult. 

In the following sections, we review general deterministic models that have 
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CHAOS IN ECOLOGY 9 

been important in ecology. We then tum to time series approaches and the 
use of experimental techniques to study chaos . Finally we discuss our forecasts 
for future directions . 

HOW CAN WE INVESTIGATE CHAOS IN 
ECOLOGY -MODELS 

We argue that chaotic dynamics are likely to be common rather than the 
exception in ecological systems by looking for chaos in ecological models ,  
focusing only on biologically reasonable interactions and parameter values. 
By showing that the presence of chaotic dynamics does not depend critically 
on either the choice of model , as long as it is sufficiently complex (in terms 
of the number of species), or the choice of parameter values, we make a 
strong case for the potential importance of chaotic dynamics in natural 
systems. 

We begin our study of chaos in ecology with strategic models, which are 
both a logical and a historical beginning. The first studies of chaos in ecology 
began with the recognition that simple discrete time models for single species 
could lead to chaotic behavior (85 , 87,  92). These models represent a logical 
beginning for several reasons. First, as we shall show, one of the surprises 
of nonlinear dynamics is a kind of universality to chaos: dynamical features 
present in the simplest models appear in a wide variety of more complex 
models . The simple models are the best way to introduce concretely some of 
the general features of chaos . Second, the parameterization of simple models 
of natural or laboratory populations is one way to determine whether chaotic 
dynamics are merely a possible outcome of ecological interactions described 
in models, or whether they actually occur in nature. Third, simple models 
already show the plausibility of chaos. 

Discrete Time Models 

We begin with one of the simplest examples of a discrete time model that 
exhibits chaos (85-87, 92) . Let Nt be the number of individuals in a population 
at time t, rbe the intrinsic growth rate, and K the carrying capacity. Then 
one version of the discrete time logistic model (85) is: 

Nt+l == Nt[I+i(1 - NtIK)]. 

One important feature of chaos is that often the exact details of the model 
are not critical, so the behavior we describe below is repeated for a wide 
variety of similar models (87). We simplify this model by letting XI = Ntrlt ( 1  
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10 HASTINGS ET AL 

+ 1K] and r = 1 + r: so XI is a rescaled measure of the size of the population 
which satisfies 

2 

The simplest way to study this equation is simply to iterate it on a computer 
by picking values for r (between 1 and 4, with some between 3.5 and 4) and 
values for xo, and then finding Xl, x2, and and so on. Notice that for r < 3, 
solutions approach a stable equilibrium. For r > 3, the solutions oscillate: 
between two or more points. Moreover, the number of points on the cycle 
increases as r increases. Specifically, the solution to the logistic equation has 
period two for r near 3, then 4, then 8, and so on, as r increases. Finally,. 
for most (but not all) values of r > 3.57 (or thereabouts), the results have no 
apparent pattern: long-term predictions are impossible even for a deterministic: 
model because any imprecision in the initial conditions gets magnified . In 
Figure 1, we have demonstrated this by looking at the outcome of applying 
Equation 2 twenty times to each of 9999 equally spaced initial conditions. 
Note that there is no apparent relationship between the initial conditions and 

the outcome at this time scale, even though the dynamics are completely 
prcdictablle on a time scale of one to a few generations. The graph of Xl vs 

1.0 r----.------,----,----,------, 

0.8 

0.6 

0.4 

0.2 

0.0 L-_�__"_� _ __'__� _ __L_� _ ____L_� __ __' 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 1 Population levels in a chaotic model after 20 time steps, x20 as a function of initial 
conditions, xo. The logistic model, Equation 2, is iterated 20 times for r = 3.7. 
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CHAOS IN ECOLOGY 1 1  

Xo i s  simple while the graph of X20 vs Xo is extremely complex . This spread 
of solutions that start close to each other is the outcome of a positive Lyapunov 
exponent, the hallmark of chaos ( 120, 12 1 ). However, we emphasize that a 
graphical approach is insufficient to unambiguously classify a system as 
chaotic: it is essential to use more precise definitions and methods. 

Another way of looking at the dynamics is the construction of a bifurcation 
diagram, e.g. (87), which displays information about the dependence of the 
dynamics on a single parameter. To construct a bifurcation diagram is a 
straightforward process. Start with a fixed value of a parameter, such as r in 
the logistic model. Then, look at the asymptotic behavior of the model for 
that parameter value, by iterating the system for a long time (say 1 00 time 
steps), and then plotting the next 32 time steps. Increase the value of the 
parameter slightly and repeat the process. The bifurcation diagram consists 
of plotting the long-term values of the dependent variable (population size, 
x, in this case) against the parameter (in this case, r) as in Figure 2. Apparent 
in the bifurcation diagram is the presence of simple periodic behavior for 
some parameter values in the region r > 3.57. The presence of period 
doubling, a solution first of period two, then four, eight and so on, is also 
apparent from the bifurcation diagram. 

x 

Period doubling is an example of a "route to chaos"-how the dynamics 

1.0 ,---------,-------,-------,---------= 

0.8 

0.6 

0.4 

0.2 

0.0 '----__ � __ -"---__ � __ -L. __ � __ -----'-___ � _ ___' 
2.0 2.5 3.0 

r 
3.5 4.0 

Figure 2 Bifurcation diagram for the quadratic model, Equation 2. Long-term population levels, 
x, are plotted as a function of the growth parameter, r. 

A
nn

u.
 R

ev
. E

co
l. 

Sy
st

. 1
99

3.
24

:1
-3

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
V

er
m

on
t L

ib
ra

ri
es

 o
n 

12
/2

0/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



12 HASTINGS ET AL 

of a system change as a parameter is changed, leading ultimately to the 
appearance of chaos . The concept is useful because only a small number of 
well-defined routes to chaos (110) have been found. These include the period 
doubling scenario we have just described as well as the breakup of quasi­
periodic behavior. Another possibility is the change of a chaotic set from 
repelling to attracting through a tangent bifurcation, which would show up as 
the sudden appearance or disappearance of a chaotic attractor as a parameter 
is varied. (This, too, can be seen in Figure 2.) A bifurcation diagram that 
corresponds to one of the well-known routes to chaos is a good indication of 
the presence of chaos in a model . The use of bifurcation diagrams can be 
extended in obvious ways to systems with more than one population or 
dependent variable and to continuous time systems, as in the ecological 
examples (61, 74). 

The bifurcation diagram illustrates several other points . First, the attractor 
is bounded-there are both upper and lower limits to the population level 
when the model is chaotic . Second, within the chaotic region of parameter 
space, some parameter values lead to simpler behavior. 

Not surprisingly, chaotic dynamics have been found in a number of more 
complex discretc time models as well. Chaotic dynamics have been found in 
models with age structure (36, 54, 79, 80), models with two species (5-9, 

13, 14, 85, 92, 99), simple models of parasites (89), host-parasitoid-pathogen 
systems (65), demographic models with two sexes (27), and models incorpo­
rating frequency dependent selection ( l0 ,  32, 91). Studies of the influence of 
periodic variation in parameters , caused for example by annual cycles, on 
discrete time models show that chaotic dynamics remain and more complicated 
behavior can result (75). Other "routes to chaos" can also appear in these 
models , e .g. the breakup of quasiperiodic behavior rather than period-dou­
bling. Th(� important question-IS chaos "more likely" with more species or 

with age structure?--does not yet, and may never have, a definitive answer. 

Continuous Time Models 

Chaotic dynamics are not a property of discrete time models. The first modem 
investigation of chaotic dynamics was that of Lorenz (83), who demonstrated 
the existence of chaotic dynamics in a continuous time model (three: 
differential equations) now known as the Lorenz equations, which caricatures 
equations from fluid dynamics . One difference between continuous time 
models and discrete time models is that, in the absence of seasonality, at least 
three variables are needed for chaos to occur. Given the emphasis of ecologicaR 
models on two species, it is not surprising that the occurrence of chaotic: 
dynamics in continuous time has not received as much attention from 
ecologists.. 

One technical tool useful for the study of dynamics in continuous time 
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CHAOS IN ECOLOGY 13 

models is the Poincare map. The word map just refers to a discrete time 
system; the map is the function giving the state of the system next time in 
terms of the state this time. The construction of a Poincare map provides a 
way to relate continuous time systems to the universal properties observed in 
discrete time systems, by looking at the system not at fixed intervals of time, 
but instead at each time the system passes through a particular set of values 
for the dependent variables. For three-dimensional continuous time systems, 
the simplest Poincare maps are given by looking at successive intersections 
(in the same direction) of the solutions of the system with a Poincare section 
consisting of a plane in the phase space. The construction of Poincare maps 
in ecological contexts is discussed in (61, 105, 125, 126, 128). The Poincare 
map of a continuous system is also a useful diagnostic tool for detecting chaos 
in a model. If the continuous system is chaotic, the Poincare map often will 
resemble a one-dimensional, chaos-producing map like the logistic map 
discussed above (Equation 2) (125, 126, 128). 

One of the first demonstrations of chaotic dynamics for a continuous time 
model in ecology was that of Gilpin (49), who showed that chaos could occur 
in a Lotka-Volterra model for one predator and two competing prey species 
with self-damping terms. Gilpin initially concluded that the dynamics were 
chaotic by looking at the solution graphically. Further study of this model by 
Schaffer (126) has confirmed that the dynamics are indeed chaotic . Other 
studies of Lotka-Volterra systems with three or more species have also found 
chaos (47 , 146). 

More recent work by Hastings & Powell (61) on a three species food chain 
has reemphasized the possibility of chaos in continuous time ecological 
models. This model describes a plant species growing logistically that is fed 
upon by an herbivore which is in turn fed upon by a carnivore, incorporating 
Type II functional responses. Hastings & Powell (61) argued that the intuitive 
reason that the dyl}amics in this model were chaotic was the interaction 
between two cycles

" 
of different period. Because cycles of different periods 

would be generated by population interactions, this reasoning would suggest 
that chaos is likely the rule rather than the exception in the dynamics of all 
but the simplest ecological communities. 

This work has been recently extended by Klebanoff & Hastings (70) who 
showed that chaos is expected in general food chain models without restricting 
attention to a specific model. More specifically , they showed that for 
parameter values where the top predator has a small population level and the 
two lower trophic levels would have a small amplitude oscillation in the 
absence of the top trophic level, chaos should occur in essentially any food 
chain model with nonlinear functional responses. Other authors (133, 158) 

h<l.ve also emphasized the presence of chaotic dynamics in a wide variety of 
simple continuous time models of interacting species. Several studies have 
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14 HASTINGS ET AL 

demonstrated chaotic dynamics in models of larger communities (37 , 1 58) . 
Thus, chaos may be widespread. 

SEASONALITY OR PERIODICITY Biological populations frequently are influ­
enced by periodic processes such as seasonality, tides, and daily changes in 
the environment. Exogenous periodic forcing can interact with intrinsic 
population processes to produce interesting dynamics that often are chaotic . 
Two lines of investigation have been emphasized by ecologists: models of 
periodically forced chemostats, and models of epidemics. Seasonal models 
of interacting species are discussed in detail in (116, 117). 

The simplest model for a chemostat considers one nutrient, one species of 
bacteria ,  and one species of protozoa preying on the bacteria, with the 
predation described by a Monod function, or a Type II functional response. 
In the absence of periodic forcing, the behavior of this model is quite simple, 
with the outcome either a limit cycle or a stable equilibrium. Two recent 
studies (74, 1 09) have examined the effect of periodic forcing in this model. 
One basic mechanism for chaos is present-periodic forcing of a system which 
is already periodic (53) . Both conclude that chaotic dynamics are quite likely, 
even though the choice of the periodic term in each case is different�ither 
the flow rate ( 1 09) or the nutrient concentration (74). 

Epidemic models represent another specific well-studied case. Schaffer, 
Kot, Olsen and colleagues (77, 1 04, 105 ,  1 25 ,  1 28, 1 32) have conducted 
extensive studies of epidemic models in a seasonal environment. These models 
are appropriate for modeling most so-called childhood diseases such as 
measles , mumps, rubella, or chickenpox. Changes in seasonal behavior of 
children is assumed to lead to a periodic contact rate. This model , like the 
chemostat model, has innate periodicity plus a periodic forcing term. 
Extensive studies of this class of models have indicated that chaos occurs for 
reasonablt: parameter values . Below we review approaches to detecting chaos 
from the 'extensive (at least by ecological standards) time series of disease 
incidence records available for childhood diseases from a number of major 
cities. 

DETAILED MODELS Strategic models can only suggest the possibility of chaos 
in natural systems .  More specific models, including the epidemic models and 
chemostat models just discussed, can provide another way to argue for the 
presence of chaos in the systems they describe. These models are specific 
enough that parameter estimates suggesting that the model's dynamics are 
chaotic may be an indication of chaos in the ecological system. 

Other systems are also appropriate for this kind of detailed modeling. 
Attempts to model specific laboratory entomological systems, such as 
Nicholson's blowflies, have also led to strategic models that have been shown 
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CHAOS IN ECOLOGY 15 

to be chaotic ( 106, 107). We discuss this particular experimental system in 
more detail when we review experimental approaches . A detailed simulation 
model of a stored-products pest, (Ptinus techtus, Coleoptera), has exhibited 
chaos ( 1 02). 

Finally, studies of models from fisheries (such as 80) have shown, not 
surprisingly, that these systems can also exhibit chaotic dynamics. Models of 
other fisheries systems, including either more species (35) or economic effects 
( 1 60) also exhibit chaotic dynamics for reasonable parameter values . 

Spatial Structure 

Recent efforts have begun to include the effects of spatial structure ( 1 1 ,  29 , 
59, 62, 63, 72, 73, 76, 1 39). Kot (73) has shown that period doubling, as in 
simpler models such as the logistic model discussed earlier, occurs in discrete 
time, continuous space models . The traveling waves of advance in these 
models can have a chaotic character. In (29, 59) complex spatio-temporal 
chaotic solutions are shown for a spatially explicit model of a host parasitoid 
system. There is also a large and rapidly growing literature in physics on 
spatial and temporal chaos reviewed in ( 1 ). 

Preliminary work on spatio-temporal chaos in ecology calls into question 
many of the generalizations one might draw both from studies of chaos without 
spatial structure and from studies of 'spatial structure that do not focus on 
chaos. Spatial structure can make chaos more likely, through a mechanism 
of diffusive instability (62, 72). Perhaps more surprisingly, simple diffusion 
can destabilize chaotic solutions, leaving simple periodic solutions as the only 
stable ones (63) in a system of two coupled quadratic maps of the form of 
Equation 2. Coupling much larger numbers of potentially chaotic systems 
leads to even more possibilities , emphasizing that dynamics can appear chaotic 
at one spatial scale and temporal scale, but not at another ( 1 39). 

Stochastic Models 

The models we have reviewed so far have all been deterministic, yet stochastic 
forces are important in ecological systems . As we noted above, it is possible 
to extend the notion of Lyapunov exponents ,  and thus a definition of chaos, 
to include stochastic systems. The number of investigations of chaos in model 
ecological systems with stochasticity has been quite small. Investigations 
( 1 1 4, 1 27) of a logistic model with noise added showed that chaotic dynamics 
persisted. Rand & Wilson ( l 15) emphasized how the interaction between the 
deterministic dynamics and noise can lead to a case where the average 
Lyapunov exponent is positive, even though the purely deterministic system 
with the same parameters is not chaotic. 

In related work, several investigators ( 1 40,  1 42) have built up from 
individual-based simulation models to population models that are chaotic . 
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16 HASTINGS ET AL 

This work provides further evidence for the ubiquity of chaos , at the 
appropriate scale, by showing that individual based models can appear 
deterministic and chaotic at the level of the population. 

The Bottom Line 

Models have indicated that chaos is a plausible outcome of the interactions 
among species . Future work on models can proceed from specific ecological 
assumptions, rather than by having to show in a general sense that chaos can 
occur. For simple discrete time models ,  the best summary is still May's (85 , 
87) observation that strong density dependence will lead to chaos. For 
continuous time models, interactions between cycles of different periods , due 
either to exogenous or endogenous effects , are emerging as a ubiquitous source 
of chaotic dynamics. Another emerging feature is that systems can look chaotic 
on one temporal or spatial scale, but not on other scales. More work is still 
needed to understand the conditions most likely to lead to chaos, and to explore 
the conseq[uences of chaos in the dynamics of more complex models . 

INVESTIGATING CHAOS-ANALYSIS OF TIME SERIES 

Proceeding along the continuum of approaches we outlined above, we tum 
our attention now to approaches that begin with observed time series. The 
strategic models we have reviewed above and the parameterization of other 
simple models indicate the likelihood of chaos for "reasonable" parameter 
values. However, to make a stronger case for chaos, this work needs to be 
supplemented with the analysis of time series .  Parameter estimates will have 
errors . Some parameters may be impossible to measure; and a fundamental 
difficulty relates to the choice of a particular model. We review methods for 
detecting chaos in time series in general and specifically discuss these 
approaches in the context of some of the time series available to ecologists, 
including the histories of incidences for childhood diseases . Much of the effort 
at understanding how to analyze time series to look for evidence of chaos has 
come from the physics community, so we begin by considering these 
approaches . We dichotomize approaches by focusing first on methods that 
attempt to detect chaos without formulating a model , and then on those 
methods based on model formulation. 

Model-Free Approaches 

RECONSTRUCTION Ecologists often pose the reasonable question of the role 
of unobserved variables in determining the dynamics of the population they 
are currently studying. There is a simple solution to this problem, when 
looking for evidence of chaotic dynamics . Packard et al (108) demonstrated 
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CHAOS IN ECOLOGY 17 

that a single time series for a single variable or population could be used to 
"reconstruct" all relevant information needed to demonstrate chaotic dynamics 
for a system with more variables (even an infinite dimensional system which 
could be used to describe age or spatial structure), provided certain technical 
conditions held (and these are almost always met). This means that the 
dynamical effects of the unobserved variables of concern to ecologists are 
incorporated in the observed data. The most popular method is reconstruc­
tion in time-delay coordinates (an idea credited to Ruelle), in which the 
original time series Xl is augmented by the additional state variables Xl - l, Xl 

- 2l, ... for some time delay l and a dimension chosen by the investigator. 
This creates a multidimensional time series, where, for example, with delay 
one and dimension three, one point would be Xt,XI - 1, Xl - 2. For ecological 
examples of this technique, see (39, 105, 125, 129, 131). Other reconstruction 
methods are discussed and evaluated in (25). 

Reconstruction makes it possible to visualize complex dynamics in real 
data, at least up to three dimensions. Figure 3 shows the strange attractor for 
a chaotic measles epidemic model (104), reconstructed from the time series 
of let), the number of individuals currently infected. Such plots are suggestive 

Chaotic SEIR model Periodic + AR model 

� � 
--J --J 
C\J C\J 

I I 
-i--> ......., 

� "'----
----

Figure 3 Time delay reconstruction in three dimensions, for time series from measles epidemic 

models. (Left) Chaotic SEIR model with seasonal forcing of the contact rate, as in (104, 132). 
(Right) Stochastic, nonchaotic model log /(t) = p(t) T c(t) where p(t) is a periodic function and 
c(c) is a series of autocorrelated random numbers. Each time series consists of monthly values 
from a simulation of 100 years. Time delay L = 3 months for both. Reconstruction follows the 
procedures in (104, 132) for measles data: three point smoothing and interpolation with cubic 
splines. 
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18 HASTINGS ET AL 

but they can be misleading: Figure 3 shows a spurious "strange attractor'" 
produced by a random, nonchaotic time series composed of an annual cyck 
plus correlated noise. To distinguish this series from a truly chaotic time 
series, more than two time lagged variables are needed. The resulting attractor 
is more than three-dimensional and therefore cannot be visualized. 

Takens's Theorem (122, 145) put time delay reconstruction on a mathe­
matically sound foundation by saying that the reconstructed and true dynamics 
will be equivalent so long as enough diffcrent time delays are used. 
Consequently, reconstruction reproduces exactly any invariants . In particular , 
the fractal dimension and Lyapunov exponents are the same in the original 
and in the reconstructed dynamical system. 

ESTIMATING INVARIANTS Numerical algorithms for calculating invariants 
were quickly developed and applied in many fields, with fractal dimensions 
attracting the most attention. In ecology, Schaffer & Kot took the lead, 
emphasizing population dynamics and childhood disease epidemics; reviews 
are in (39, 77, 131, 132). The non-ecological literature is vast, but good 
overviews are available (1, 2, 38, 93, 137, 148). 

Eventually, it was realized that "computing fractal dimension is a tricky 
business" (148, 149). The amount of data needed to compute reliably the 
fractal dimension of a deterministic system has been estimated under different 
assumptions (48, 121, 136, 138). The theoretical requirement for efficient 
methods with accurate data suggest that "a few thousand observations" will 
be adequate for deterministic systems "if we are not too stringent about the 
accuracy of the estimates" (138). In practice even several hundred observa­
tions may be adequate (4, 64). However, even very small stochastic effects 
can cause great difficulties (137), and seasonality (i .e. periodic forcing) can 
give a spurious appearance of low dimensionality in nonchaotic data (39). 

Compared with the fractal dimension boom, little effort has gone into 
determining the data requirements and robustness to noise of methods for 
computing Lyapunov exponents. We emphasize again that the Lyapunov 

exponent quantifies a chaotic system's sensitive dependence on initial condi­

tions; it is therefore a key quantity in characterizing dynamics. Initially 
Lyapunov exponents appeared to be estimated less reliably than dimensions 
(159, 162), but interest in Lyapunov exponents is reviving as better methods 
are developed. See (17, 20) for methods for deterministic systems. 

Schafkr et al (132) review Lyapunov exponent estimates for childhood 
disease epidemics, based on a modification of the method of Wolf et al (163) 

to account for seasonality. However, the method (163) assumes a noise-free 
system, and its estimates of Lyapunov exponents are inflated by dynamical 
noise (123). 

What is particularly important for ecologists is that, unlike fractal dimen-
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CHAOS IN ECOLOGY 19 

sions , Lyapunov exponents remain well defined in the presence of dynamical 
noise and can be estimated by methods that explicitly incorporate noise (40, 

103). This knowledge underlies our contention that at present estimating 
Lyapunov exponents is the best approach for detecting chaos in ecological 
systems. 

NONLINEAR FORECASTING AND SURROGATE DATA Due to the difficulty of 
estimating invariants, methods have been developed to test directly for 
determinism, rather than testing indirectly by estimating invariants. One 
approach is "nonlinear forecasting": Construct a nonparametric, nonlinear 
time-series model for the dynamics, reserving some data to evaluate the 
model's accuracy .  The seminal papers (22, 34, 42) showed that very high 
prediction accuracy, unambiguously indicating a deterministic system, could 
be achieved on clean chaotic data. Recent work has refined the modeling 
procedures (26) and has shown that nonlinear forecasting can be used to filter 
out small measurement errors (43, 56, 71). Sugihara & May (144) developed 
a nonlinear forecasting method, in which a time-series is identified as chaotic 
if it is predictable in the short term but unpredictable in the long term; these 
features are interpreted as revealing sensitive dependence on initial conditions . 
Kaplan & Glass (67) proposed a statistical test of whether a time series is 
deterministic , by determining if all trajectories in a small region of state space 
are pointing in the same direction. 

However, measurement errors and dynamical noise also create difficulties 
for nonlinear forecasting . Even small measurement errors can make a 
deterministic chaotic series highly unpredictable and effectively stochastic 
(25). Moreover, an estimate of predictability per se says little unless there is 
some means of determining whether the cause of unpredictability is external 
or internal to the system, and if internal , whether it is due mainly to 
low-dimensional chaos plus measurement errors . This ambiguity seriously 
confounds Sugihara & May's (144) method. Using this method, measles 
epidemics are classified as chaotic (143, 164), supporting the conclusions of 
Schaffer and coworkers (132). However long-term unpredictability could 
equally well result from the compounding effects of random shocks over time; 
hence the Sugihara & May method cannot distinguish between chaos and 
dynamical noise (39). 

Another alternative to estimating invariants is to use invariants strictly as 
sample statistics for hypothesis tests. Bootstrap-like tests have recently been 
proposed, which involve calculating the same measure for the real data and 
for many "surrogate" data sets that match certain attributes of the real data 
(151). For example, Schaffer et al (132) apply the same estimate of the 
Lyapunov exponent to their data and to surrogate time series generated by 
randomly shuffling the data. Any null hypothesis can be tested , so long as 
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20 HASTINGS ET AL 

surrogates conforming to the null hypothesis can be generated (e.g. having 
the same linear correlations as the data). Inaccurate estimates of data attributes, 
which are inevitable when analyzing real data, may cause spurious rejections 
of the null hypothesis unless precautions are taken (150). 

Nonlinear Modeling of Ecological Time Series Data 

GOALS OF TIME-SERIES MODELLING The succession of nonlinear time series 
methods, from naive estimates of invariants to formal hypothesis tests, has 
demonstrated that the early hopes for one algorithm to handle all data sets 
raised by Takens's Theorem were unrealistic. Reconstruction provides the 
raw mat�:rial for analysis, but it does not solve the problem of estimating 
quantities of interest from finite and noisy time series data. Given limited 
amounts of limited precision data, it is essential to identify the goals and 
limitations of any analysis: What questions are being asked? What alternative 
hypotheses are credible, given what is already known about the system? What 
assumptions can safely be made about the data? For the questions, hypotheses , 
and data in hand, what methods are acceptably reliable? 

Several authors have recently proposed, with ecological applications in 
mind, extensions of the nonlinear prediction approach that explicitly incorpo­
rate a random component in the dynamics .  The first step is reconstruction in 
time delay coordinates. Casdagli (23) has extended Takens's Theorem to 
systems affected by exogenous variables; for such systems the reconstructed 
dynamics follow a nonlinear autoregressive model (24) , 

NI = F(Nr- l ,  NI-2, ... NI-d ,  Er) . 3 .  

Here Nt i s  the population density at year t ,  d i s  the embedding dimension 
(i.e. how far in the past we look for explanation of current popUlation change), 
Et is a vector that represents the action of exogenous variables, and F is a 
function that describes the effects of past population densities and exogenous 
variables on the present population density. The time interval at which the 
series is "sampled" does not have to be 1 year, in which case subscripts 
(- 1 ,(-2, etc are substituted with (-i, 1-2i, and so on. 

The reconstructed dynamics (Equation 3) resemble some population models 
with discrete generations , but reconstruction is equally valid if generations 
overlap. In such cases past values of total population size serve as surrogates 
for the current age structure, in a way that preserves certain properties such 
as the Lyapunov exponents . 

In principle the exogenous component Et can include periodic (e .g .  
seasonal) and systematic long-term changes in environmental factors affecting 
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CHAOS IN ECOLOGY 2 1  

the dynamics. However, current approaches i n  ecology generally assume that 
the exogenous variables are random and additive when population densities 
are log-transformed. This is unlikely to hold in all cases but can be regarded 
as a first approximation. The exogenous term is usually interpreted as 
environmental stochasticity, but it also contains measurement errors and any 
other factors that were not included in the model . 

Within this approach, questions related to nonlinear dynamics that can be 
addressed include the following. (i) What is the relative importance of 
exogenous factors and endogenous dynamics? (ii) Is there evidence for 
nonlinearity in the endogenous dynamics? (iii) If the system is nonlinear, is 
there evidence for chaotic rather than stable endogenous dynamics? (iv) What 
is the interaction between the exogenous and endogenous dynamics (e .g. what 
is the return time following a perturbation)? (v) How well, and how far ahead, 
can we make predictions? 

Applying this approach to data consists of three steps: deciding on a family 

of models to fit the endogenous component, F in Equation 3; determining the 
complexity of the model; and using the fitted model to characterize the 
dynamics of the data. 

FITIING THE ENDOGENOUS COMPONENT Early time-series models in ecology 
either were linear in log-transformed lagged densities (21, 45, 95) ore else 
used only a single time delay (58). Current nonlinear models range from 
simple parametric models to non parametric methods with a potentially 
unlimited number of parameters . 

The virtue of a simple parametric model is that the majority of time series 
in ecology are not long enough to be fitted with more complicated models. 
POPSYS ( I 5 ,  16) is a simple parametric model which assumes that the per 
capita rate of change is affected by both direct and delayed density depen­
dence. Further, all the parameters have a clear biological interpretation. 
However, the disadvantage of assuming a particular functional form is that 
the model may not be flexible enough to give good results in many cases. 
Thus ,  using a different functional form could result in a very different answer 
(96). 

A more flexible approach relies on the response surface methodology 
(RSM) for model fitting ( 1 54-156). RSM is a generalization of polynomial 
regression in which the independent variables (Nt- 1 >  Nt-2 , ... ) are transformed 
using the Box-Cox family of power transformations. Because the parameters 
do not have a biological interpretation, RSM is intermediate in spirit (as well 
as data requirements and flexibility) between parametric models like POPSYS 
and nonparametric methods . Simulation tests using a variety of ecological 
models indicate that RSM works well with short (20-50 data points) and quite 
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22 HASTINGS ET AL 

noisy (up to 50% of the endogenous component) data sets . The price, however, 
is the ability to classify correctly only low-dimensional dynamics (d�3).  Other 
approaches (e.g .  neural nets) are preferable for higher dimensional dynamics 
because the number of parameters in those schemes grows more slowly with 
dimension than RSM. 

The most flexible approaches use nonparametric regression to approximate 
F (22, 24 , 40, 1 03 ,  144) . Several types of methods (thin-plate splines, neural 
nets, and kernel regression models) appear to work well on moderate amounts 
of data (50-500 values) from nonlinear systems, even at fairly high noise 
levels ( Hl--20% of the endogenous component) . Nonparametric methods can 
approximate any functional form, can "smooth" the data when noise is present, 
and some: (neural nets , kernels) can accommodate an arbitrary number of lags. 
This flexibility increases the amount of data required and also the computa­
tional cost of estimating parameters accurately.  

Smalkr data sets and increased amounts of  noise result in high variance of 
Lyapunov exponent estimates for the nonlinear time series methods .  This can 
be partly compensated by surveying results from a number of similar data 
sets, e .g .  data from different localities . 

MODEL SELECTION: HOW COMPLEX SHOULD THE MODEL BE? Model selection 
is critical to obtaining accurate results. A model with too few parameters or 
too small a number of delays in the reconstruction will not be able to 
approximate the dynamics. A model with too many parameters will "fit the 
noise" instead of only fitting the endogenous feedbacks , with disastrous 
consequences. 

One popular criterion is to select the model that is best at predicting the 
data (22, 24 , 25 , 144) . To avoid overfitting, prediction accuracy can be 
quantified by cross-validation: delete each data point (one at a time), fit the 
model on the reduced dataset, and then use the fitted model to predict the 
deleted point. Cross-validation can be used to choose the embedding dimen­
sion d (28 , 144) and the parameters controlling the degree of smoothing used 
in a particular model . However, cross-validation is very computer intensive . 
Criteria have been derived that use the error variance adjusted by the number 
of fitted parameters to approximate the cross-validated prediction accuracy, 
but these require modifications to work effectively on time serics data ( 1 03) .  
Another shortcut is to reserve part of the data for evaluating the model' s  
prediction accuracy (22 , 24, 144) , but this reduces the amount o f  data available 
for parameter estimates . Research is still needed to identify practical and 
reliable model selection methods. 

Finally, the dynamics of the system can be characterized by simulating the 
model , or by using the model to estimate the dominant Lyapunov exponent 
A, with a positive exponent indicating a chaotic system. 
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CHAOS IN ECOLOGY 23 

WHAT HAVE WE LEARNED SO FAR ABOUT NATURAL POPULATIONS? What have 
time-series methods told us about the frequency of chaotic dynamics in nature? 
Schaffer & Kot ( 1 3 1) surveyed a number of longer ecological time series. 
They concluded that reconstructed dynamics suggested chaos in four cases: 
the Canadian lynx cycle, outbreaks of Thrips imaginis, a microtine rodent 
cycle, and measles epidemics ( 1 3 1 ) .  Witteman et al ( 16 1 )  extended this 
approach to 71 population time series that were longer than 50 years , finding 
several patterns that suggested to them complex dynamics. However, visual 
examination of "attractors" can be misleading (see Figure 3). Turchin & Taylor 
( 1 56) examined 1 4  insect and 22 vertebrate population time series using RSM, 
and one case, the beech aphid, was classified as chaotic . Subsequent analyses 
using cross-validation selected a lower-dimensional stable model (P. Turchin, 
unpublished ms) . Most recently ,  Ellner & Turchin (41 )  applied neural net, 
spline, and RSM time series models to a large number of time series . Although 
they used a conservative method of estimating Lyapunov exponents, they 
found a wide range of dynamics: from stable (noise-dominated) to apparently 
chaotic. For example,  numerical fluctuations of voles in Finnish Lapland and 
also of Nicholson'S  blowflies were characterized by positive Lyapunov 
exponents. The conservatism of the method employed by Ellner & Turchin 
(41 )  argues that such findings of chaos may reflect reality. On the other hand, 
like any other statistical quantity, the Lyapunov exponent is estimated with 
error, and thus one should expect a few positive estimates by chance alone, 
even if there are no chaotic dynamics in nature. The solution to this problem 
is either to calculate confidence limits for each time series , or, alternatively, 
to survey a number of time series that are assumed to have similar dynamics. 
For example, Turchin ( 1 57) examined data for several rodent species from 
six arctic and boreal sites. RSM analysis classified 15  of 23 time series as 
chaotic , arguing that findings of chaos in northern voles are unlikely to be a 
chance occurrence . 

Time series analysis methods continue to evolve and cannot yet be regarded 
as supplying unequivocal answers . The most notable conclusion from current 
methods may be that the extreme positions-that chaos is "always" or "never" 
at the root of complex ecological dynamics-are not supported. Sharper 
statements may become possible as sharper tools, and better data sets (e .g.  
from controlled experiments) may become available. 

FUTURE DIRECTIONS FOR TIME SERIES ANALYSIS The methods for detecting 
chaos in time series data are very new. A number of key questions remain to 
be answered. Current approaches usually assume that exogenous factors act 
as uncorrelated random shocks. Environmental trends and periodic (e .g .  
seasonal) changes in  the environment can be included into models ,  but it i s  
unclear what are best ways to do so . A number of statistical issues are 
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24 HASTINGS ET AL 

unresolve:d. Are estimates biased and can this bias be corrected? Is the 
assumption of additive uncorrelated noise adequate , and under what conditions 
do more complex assumptions regarding error structure need to be made? 
How do we obtain confidence limits of estimates? Finally and most im­
portantly "  we need to test these approaches and determine under what 
conditions they give correct answers and when they break down. 

EXPERIMENTAL APPROACHES 

Consideri.ng the difficulties of attempting to detect complex dynamics from 
time seri(�s collected in the field, it is natural that ecologists have turned to 
laboratory systems in their attempts to detect chaotic population dynamics. 
In the laboratory the abiotic environment is under the control of the 
experimenter, who also is able to determine the number of interacting species. 
Unfortunately, laboratory studies are no panacea and have their own particular 
set of difficulties .  In this section we discuss some problems associated with 
attempts to detect complex dynamics in the laboratory, and then we review 
the still relatively few studies where this has been attempted. 

Problems 

The choice of study organism is crucial to the success of any attempt to obtain 
long runs of population data in the laboratory: it is necessary to maintain 
replicated populations of reasonable size in culture. The logistics of laboratory 
experimentation require that the study organism be small, almost certainly an 
invertebrate or microorganism, and very likely one of the small set of 
laboratory organisms whose ecology in captivity is very well characterized. 
Small size normally is correlated with short generation time, which allows 
long runs of data over many generations to be collected relatively quickly. A 
logical extension of this argument is to work with microorganisms that have 
very short generation times. However, there are often great difficulties in 
sampling microorganisms, especially if densities have to be estimated by 
counting individuals under a microscope. Automated techniques such as image 
analyses offer one way of avoiding these problems. 

The population dynamics of organisms in the laboratory obviously differs 
from their dynamics in the field. This raises the question of how to interpret 
the success or failure of attempts to detect chaos in the laboratory . One line 
of argument suggests that chaos is easier to detect in artificial experiments . 
Laboratory ecosystems are relatively simple. Cycles (and possibly chaos) are 
easier to find in simple ecosystems such as the arctic than in complex 
ecosystems in temperate and tropical regions. On the other hand, the reduced 
species diversity of laboratory systems , and the lack of any significant spatial 
dimension, means that processes known from theoretical studies to generate 
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CHAOS IN ECOLOGY 25 

complex dynamics cannot operate in the laboratory . There are also more 
mundane problems with laboratory experiments. In nearly all experiments, in 
one form or another, food must be regularly added to the system. The resource 
renewal regime may determine and dominate the observed dynamics. This is 
especially likely to be a problem in experiments with comparatively large 
organisms, such as insects, whose resources are added in relatively infrequent 
pulses. For example, the adults of some laboratory insects are harvested each 
generation and then placed on fresh resources to lay eggs. Such artificial 
rearing protocols have a huge effect on dynamics and may give rise to patterns 
of population change that are very different from those exhibited by the same 
species in natural systems. 

The laboratory is a strange environment for most organisms and one to 
which they are to some extent poorly adapted . In consequence, natural 
selection may operate over the coursc of a long-term experiment. Indeed, an 
experiment that allows sufficient time to reveal complex dynamics is almost 
certainly long enough to allow Darwinian evolution . If natural selection 
influences demographic parameters, then any attempt to characterize the 
undcrlying dynamic attractor, or to fit a model to the time series, may be 
chasing a moving target. In effect the whole time series may be an evolutionary 
transient. Of course, evolutionary changes may be included in the dynamical 
description of the system, but the slower timescale of evolutionary changes 
probably makes the experimental studies of such systems infeasible, at least 
for eukaryotes . 

Despite these caveats , we believe that experiments will eventually be able 
to demonstrate unequivocally the existence of chaotic dynamics in simple 
ecological systems. Here we discuss some existing data sets in light of the 
approaches we have advocated. 

Experiments 

The Australian entomologist A. J. Nicholson was unaware of chaos when in 
the 1 950s he initiated a series of long-term experiments in which he kept 
populations of blowflies (Lucilia cuprina) in cages under a variety of resource 
renewal regimes ( 100, 101) .  In one experiment, which lasted for over 700 
days, the numbers of adult blowflies fluctuated with irregular cycles for the 
first 400 days . Subsequently,  the fluctuations became much more irregular, 
and the average population density increased. The data from this experiment 
have been subject to repeated analysis using a wide range of different 
techniques ( 19 ,  55 ,  106, 107, 14 1 ) .  There is general agreement that the 
dynamics over the first 400 days can be explained by perturbed limit cycles. 
However, it is unclear whether the variability in the cycles is best explained 
by a model with a chaotic component or by noise ( 12). The pronounced change 
in dynamics toward the end of the experiment may have been caused by 
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26 HASTINGS ET AL 

natural selection acting on the demographic parameters. Stokes et al (141) 

estimated the parameters of a delay-differential model using data from the 
beginning and the end of the time series. They found that fecundity decreased 
toward the end of the experiment, but that tolerance to crowding increased . 
In a computer simulation, a mutant with the parameters estimated from data 
collected at the end of the experiment was able to invade a population 
characterized by the parameters associated with the beginning of the experi­
ment. 

The question of whether natural selection reduces the frequency of chaos 
in nature has prompted a series of experiments with Drosophila maintained 
in serial culture (46, 97, 98, 111, 113, 118, 152). Most analyses of Drosophila 

have fitte:d relatively simple population models to runs of data of between 8 

and 15 generations and concluded that the population dynamics are determin­
istically stable , although they frequently display damped oscillations ( 154). 

In a few cases , models fitted to one or a few replicates show cyclic or chaotic 
dynamics , but the statistical significance of these observations is unclear (98, 

113, 154). A recent model by Ferriere & Gatto (44) has shown how chaos 
can result from natural selection. 

Laboratory cultures of several other insect species display interesting 
dynamics. Cultures of flour beetles (Tribolium) nearly always have cyclic 
dynamics (31), almost certainly due to asymmetric interactions between 
different age classes (60) . However, no evidence for chaotic dynamics has 
been found in this system (A Hastings & RF Costantino, unpublished) , 
although the dynamics may be quite complex. Long-term cultures of bean 
weevils (Callosobruchus) and their hymenopteran parasitoids display irregular 
fluctuations. Detailed, behavior-rich simulations of the host-parasitoid inter­
action ar,e chaotic and produce dynamics that at least superficially resemble 
the laboratory data ( 14). 

Experiments have investigated the long-term dynamics of freshwater 
organisms such as the cladoceran Daphnia in the laboratory. In one of the 
first such experiments , Slobodkin (134, 135) observed irregular fluctuations 
in time series that lasted between 200 and 400 days. Application of the 
approaches for analyzing time series by computing Lyapunov exponents 
discussed in the previous section indicate that these time series are essentially 
periodic , as all Lyapunov exponents are negative (A. Hastings, unpublished 
results). This is evidence of the difficulty of relying on visual evidence for 
chaos. Other experiments lasting over 200 days (68) have observed both 
constant and variable opulation densities. McCauley & Murdoch (94) noted 
that cychcaJ dynamics often occur in laboratory populations of c1adocerans. 
However, they did not attempt to determine whether population fluctuations 
were consistent with the influence of periodic forcing, endogenous stable 
cycles, or more complex dynamics . Kot is currently attempting to detect chaos 
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CHAOS IN ECOLOGY 27 

in aquatic microcosms (M Kot, unpublished) , because such systems are 
excellent candidates for this type of investigation. 

Recent work on a simple plant system which has used the approach of 
parameter estimation in a simple model ( 153) has argued for the presence of 
chaos. Although this study has the difficulties of choice of models discussed 
earlier, no other approach seems feasible, because the time scale of the annual 
dynamics is too long to permit the collection of a time series. 

WHAT SHOULD ECOLOGISTS DO ABOUT CHAOS 

There are several stages in the development and maturity of a subject when 
a review can be written. In the initial stage of the development, a review can 
provide one individual's insights and attract others . After most of the questions 
in an area have been answered, a review can provide a summary so that the 
results can be used to move on to new subjects. We feel that the study of 
chaos in ecology lies between these extremes . What we have tried to do here 
is to bring together ideas from many approaches, indicating those we feel will 
prove successful in the future, and those we feel have not stood the test of 
time. Yet, much work needs to be done. We hope that this review will prove 
outdated in five years , although we hope as well that our suggestions for 
future directions will prove correct. 

The reader will have noticed that we have skirted the answer to the question 
in the title. We have demonstrated that chaos is quite likely, but much more 
work is needed to obtain a fuller answer to the question . We have, however, 
shown ways to proceed to get the answer. 

We conclude with brief suggestions for experimentalists and theoreticians . 
We believe that the study of chaos is important for ecology because the lessons 
of nonlinear dynamics will provide very different answers than the linear 
models traditionally emphasized by ecologists. Also, we believe that the use 
of equilibrium approaches needs to be circumscribed carefully . 

To study chaos in ecology, experimentalists need to determine ways to 
obtain long enough time series, so that the presence of chaotic dynamics can 
either be confirmed or rejected. We have indicated some of the difficulties 
with this approach above, but simultaneously we have shown that the length 
of time series needed may be less than widely believed (50 data points may 
be sufficient) . Thus, there is a real possibility of achieving this goal. 
Experimentalists also need to be aware of the potential implications of chaos 
for long-term predictions, and the fact that sustained "irregular" fluctuations 
may be due to chaos. Perhaps evidence for chaos can come from approaches 
based on parameter estimates for detailed models of laboratory populations, 
since these models may be well justified. 

There are several challenges for theoreticians as well . Analyses of models 
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28 HASTINGS ET AL 

need to get away from equilibrium approaches. This will of necessity lead to 
changes in the development of ecological theory in many areas , from the 
study of population dynamics to food web theory. Here, both numerical 
methods and new analytic approaches will prove useful.  Analyses of chaos 
focussing on transients ( 1 47) and local Lyapunov exponents ( 1 )  will likely 
prove useful. Another particularly promising development is the use of 
permanence (66) , instead of asymptotic stability, as a mathematical definition 
of the intuitive ecological notion of stability. Also, we assume that there will 
be improvements in techniques for the computation of Lyapunov exponents ,  
and perhaps approaches will be  developed that can make use of  data collected 
across space over shorter time scales than would be needed for data collected 
at a single point in space. 

The challenges are many, yet the chance of success is high. 
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