
Biological Populations with Nonoverlapping Generations:
Stable Points, Stable Cycles, and Chaos

Abstract. Some of the simplest nonlinear difference equations describing the
growth of biological populations with nonoverlapping generations can exhibit a
remarkable spectrum of dynamical behavior, from stable equilibrium points, to
stable cyclic oscillations between 2 population points, to stable cycles with 4, 8,
16, . . . points, through to a chaotic regime in which (depending on the initial
population value) cycles of any period, or even totally aperiodic but bounded
population fluctuations, can occur. This rich dynamical structure is overlooked in
conventional linearized analyses; its existence in such fully deterministic non-
linear difference equations is a fact of considerable mathematical and ecological
interest.

In some biological populations (for
example, man), growth is a continuous
process and generations overlap; the
appropriate mathematical description
involves nonlinear differential equa-
tions. In other biological situations (for
example, in 13-year periodical cicadas),
population growth takes place at dis-
crete intervals of time and generations
are completely nonoverlapping; the ap-
propriate mathematical description is in
terms of nonlinear difference equations.
For a single species, the simplest such
differential equations, with no time de-
lays, lead to very simple dynamics: a
familiar example is the logistic, dN/dt =
rN( 1- N/K), with a globally stable
equilibrium point at N = K for all
r> 0.

It is the purpose of this report to
point out that many of the correspond-
ing difference equations of population
biology have been discussed inade-
quately, as having either a stable equi-
librium point or being unstable, with
growing oscillations (1, 2). In fact,
some of the very simplest nonlinear
difference equations even for single
species exhibit a spectrum of dynamical
behavior which, as the intrinsic growth
rate r increases, goes from a stable
equilibrium point, to stable cyclic oscil-
lations between 2 population points, to
stable cycles with 4 points, then 8
points, and so on, through to a regime
which can only be described as chaotic
(a term coined by J. A. Yorke). For
any given value of r in this chaotic
regime there are cycles of period 2, 3,
4, 5, . . ., n, ... ., where n is any posi-
tive integer, along with an uncountable
number of initial points for which the
system does not eventually settle into
any finite cycle; whether the system
converges on a cycle, and, if so, which
cycle, depends on the initial population
point (and of course some of the cycles
may be attained only from infinitely
unlikely initial points). Figure 1 aims
to illustrate this range of behavior.
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Specifically, consider the simple non-
linear equation

Ng+. = Ntexp[r(l -Nt/K)] (1)
This is considered by some people (2,
3) to be the difference equation analog
of the logistic differential equation, with
r and K the usual growth rate and
carrying capacity, respectively. The sta-
bility character of this equation, as a
function of increasing r, is set out in
Table l and illustrated by Fig. 1.

Another example is

N,+ = N,[l + r(1- Nt/K)] (2)
This quadratic form is probably the
simplest nonlinear equation one could
write. Although discussed by various
people (4, 5) as the analog of the logistic
differential equation, Eq. 2 is less satis-
factory than Eq. 1 by virtue of its un-
biological -feature that the population
can become negative if at any point
Nt exceeds K(1 +r)/r. Thus, stability
properties here refer to stability within
some specific neighborhood, whereas in
Eq. 1, for example, the stable equilib-
rium point at N=K is globally stable
(for all N> 0) for 2 > r> 0. With this
proviso, the stability behavior of Eq. 2
is strikingly similar to that of Eq. 1; see
Table 1.
That such single species difference

equations should describe populations
going from stable equilibrium points to
stable cycles as r increases is not sur-

prising, in view of the general engineer-
ing precept that excessively long time
delays in otherwise stabilizing feedback
mechanisms can lead to "instability"
or, more precisely, to stable limit cycles
(5, chapter 4; 6). What is remarkable,
and disturbing, is that the simplest,
purely deterministic, single species mod-
els give essentially arbitrary dynamical
behavior once r is big enough (r>
2.692 for Eq. 1, r>2.570 for Eq. 2).
Such behavior has previously been
noted in a meteorological context (7),
and doubtless has other applications
elsewhere. For population biology in
general, and for temperate zone insects
in particular, the implication is that
even if the natural world were 100 per-
cent predictable, the dynamics of pop-
ulations with "density dependent" regu-
lation could nonetheless in some cir-
cumstances be indistinguishable from
chaos, if the intrinsic growth rate r were
large enough.
The detailed analysis substantiating

these remarks, and deriving Table 1,
will be set out in the technical litera-
ture. A very brief outline is as follows:
(i) For the general nonlinear difference
equation

N = f(N,) (3)

the locally stable equilibrium point or
points can be found by the conventional
techniques of linearized stability analy-
sis. For Eq. 1, a fully nonlinear analy-
sis can be given by observing that Vt,
(N, - K)2 is a Lyapunov function,
with the properties Vt > 0 and .Vt=3
V,I1-VI,0 for all Nt>0, for 2>
r> 0: this ensures that the equilibrium
point is globally stable. (ii) Next, the
possible occurrence of cycles with pe-
riod 2 may be studied for the equation

Nt+2= f(Nt)] (4)
For Eqs. I and 2 this has a unique non-
trivial equilibrium solution, N- = K, for
r < 2, corresponding to the above stable
point; as r increases above 2 this solu-
tion of Eq. 4 becomes unstable, and (as

Table 1. Dynamics of a population described by the difference equations I or 2.

Value of the growth rate, r
Dynamical behavior

Equation 1 Equation 2

Stable equilibrium point 2 > r >0* 2 > r > 0
Stable cycles of period 2"

2-point cycle 2.526 > r > 2.0001' 2.449 > r > 2.000
4-point cycle 2.656 > r > 2.526t 2.544 > r > 2.449
8-point cycle 2.685 > r> 2.656 2.564 > r > 2.544
16, 32, 64,... 2.692 > r > 2.685 2.570 > r > 2.564

Chaotic behavior. (Cycles of arbitrary r > 2.692§ r> 2.570
period, or aperiodic behavior, depend-
ing on initial condition.)

* See Fig. Ia. t See Fig. lb. t See Fig. lc. § See Fig. 1, d, e, and f.
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l \ & \,`/ Fig. 1 (left). (a to f) Spectrum of dy-
oinamical behavior of the population den-

(a) r= 1.8 sity, N,/'K, as a function of time, t, as
described by the difference Eq. 1 for vari-O 20 0 OLIS valuLes of r. Specifically: (a) r = 1.8,

time,t stable eqtuilibrium point; (b) r = 2.3, sta-
ble 2-point cycle; (c) r = 2.6, stable 4-

point cycle; (d to f) in the chaotic regime, where the detailed character of the solution
depends on the initial population valuLe, with (d) r = 3.3 (N./K = 0.075), (e) r = 3.3
(N,/K = 1.5), (f) r = 5.0 (N,,/K = 0.02). Fig. 2 (right). Stability character of
the difference equation model of two-species competition, Eq. 5. Specifically, the
figure is for r, = r, r = 2r, K1 = K2 = K, an = a22= 1, al2 = a22 = a: under these
conditions the criterion for a stable point, Eq. 7, reduces to the requirements a < 1 (as
for the analogous Lotka-Volterra differential equation), together with [3 - (I + 8a2) l]/
[2(1- a)] > r > 0. The first popuLlation. expressed as N1/K, is shown as a function
of time for a = 0.5 and several valtues of r: (a) r = 1.1; (b) , = 1.5; (c) r = 2.5; (d)

illustrated by Fig. lb) bifurcates into
a pair of points, between which the
population alternates in a 2-point cycle
which is stable provided 2 <r < 2.526
for Eq. 1, anid 2 < r < 2.449 for Eq. 2.
Beyond this, the 2-point cycle in turn
becomes unstable and each of the points
bifurcates into 2 further points, giving
a stable 4-point cycle (for example,
Fig. Ic), and so on. (iii) As r con-
tinues to increase, there is a limit to
this process whereby cycles of period
21' become unstable and bifurcate into
stable cycles of period 2n+1. This lim-
iting value of r, r, say, may be calcu-
lated [either by brute force, or by
analytic methods developed in (8)],
and is as set out in the final line in
Table 1. For r>rC., there ensues a
regime of chaos, in which there exist
an uncouLntable number of initial points
N., for which the system does not even-
tuLally settle into any cycle (that is, is
not "asymptotically periodic"). (iv) In
particular, at yet larger values of r (- >
3.102 for Eq. 1, and r>2.828 for Eq.
2), Eqs. 1 and 2 may be shown to
have cycles with period 3; that is, solu-
tions such that N,1 3 = Nt /- Nt+1 +
Nt+2. But Li and Yorke (9) have re-

cently proved an elegant and abstract
mathematical theorem, which states
that if the general difference equation,
Eq. 3, has a 3-point cycle, it necessarily
follows that for the sanme parameter
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values there are cycles of period n,
where n is any positive integer, and fur-
thermore there exist an uncountable
number of initial points for which the
system is not even asymptotically pe-
riodic. Li and Yorke's general theorem
for cycles of period 3 may be extended
(8) to show that equations of the
generic form of I and 2 will enter a
regime of chaos, with an uncountable
nLInuber of cycles of integral period
along with an uncountable number of
aperiodic solutions, beyond the limiting
value r. defined above.
The dynamical behavior of Eqs. 1

anid 2 in this chaotic regime, r>ri., is
illustrated in Fig. 1, d, e, and f. Figure
1, d and e, are for the same value of
r, anid differ only in their initial popu-
lation value. Note that either of these
figures, if looked at only over particular
short time intervals, could convey the
impression of being locked into a 3-
point cycle; around this value of r
there is a tendency to be "captured"
into almost-periodic 3-point cycles, in
between episodes of apparently chaotic
behavior. A detailed understanding of
these properties remains an interesting
mathematical problem, related to that
of determining what fraction of the
totality of initial points converge to a
3-point cycle, what fraction to a 5-point
cycle, and so on, ending with a deter-
mination of the fraction of initial points

IC

A >D>0 [ifA <2]
A > D > 2A-4 [if A > 2]

(7a)
(7b)

Here D is as above, and A is defined as
A = (a1iK.,/r.,N.1i) + (a2)Kj/irlNi*),
with N1: and N.,* the equilibrium solu-
tions of Eq. 5. [The methodology for
stability analysis of such two-species
difference equations is indicated else-
where (6)]. If the right-hand side of
Eq. 7a is violated, one of the species is
eliminated, as in the differential equa-
tion model, Eq. 6. If any of the other
inequalities in Eq. 7 is transgressed, the
two species continue to coexist, but
there is no longer a stable equilibrium
point. Numerical studies reveal a re-
gime of stable cycles, giving way to one
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which lead to aperiodic behavior. For
relatively large values of r beyond r,
(for example, Fig. 1 f) the population
variations become more severe, al-
though the mean population value may
be shown to remain around K; as r
becomes larger, this mean value is in-
creasingly constituted of a few fairly
large population values, together with
long sequences of very low population
values.
The above discussion is restricted to

single species systems obeying differ-
ence equations. However, similar con-
siderations are likely to apply, a fortiori.
to multispecies situations.
As one among many possible exam-

ples, consider a simple difference equa-
tion model for competition between two
species

N,(t + 1) Ni(t)exp{r,[K, -aNd(t) -

i2N2(t)]/K,} (5a)
N2(t + 1) =N2(t)exp{r2[K2-

a2INI(t) - a.2N2(t)]/K2} (Sb)
Just as Eq. 1 may be regarded as a
difference equation analog of the logis-
tic, Eq. 5 may be regarded as an analog
of the familiar Lotka-Volterra differen-
tial equation model for two-species
competition. As usual, ri are the growth
rates, Ki the carrying capacities, and
aii the competition coefficients. The
dynamical properties of such Lotka-
Volterra differential equations are
straightforward: the two species coexist,
with a globally stable equilibritum point,
if and only if

D > 0 (6)

where D is defined as D = a,la,. -
a.12. Failing this, one or the other
species is extinguished. But for the sys-
tem of difference equations, Eq. 5, the
criterion for the existence of a stable
two-species equilibrium point is more
restrictive, namely

(b) r a 2.3

r = 4.0.
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of apparent chaos, as for the single
species systems discussed in detail
above. The behavior of the system of
Eq. 5 in these various regimes is illus-
trated in Fig. 2.

Equations 1 and 2 are two of the
simplest nonlinear (density dependent)
difference equations that can be written
down. Their rich dynamical structure,
and in particular the regime of appar-
ent chaos wherein cycles of essentially
arbitrary period are possible, is a fact
of considerable mathematical and eco-
logical interest, which deserves to be
more widely appreciated. Without an
understanding of the range of behavior
latent in such deterministic difference
equattons, one could be hard put to
make sense of computer simulations or
time-series analyses in these models.

ROBERT M. MAY
Biology Department, Princeton
University, Princeton, New Jersey 08540

The geographical distribution and the
nature of human schistosomiasis re-
quire special care in the selection of
chemotherapeutic agents for the treat-
ment of this infection. More than 200
million human subjects are infected
with schistosomes and the incidence is
on the increase. Even a low frequency
of delayed serious complications, pro-
duced by mutagenic, teratogenic, and
carcinogenic actions of a drug, can in-
volve a large absolute number of in-
dividuals. Populations infected with
schistosomes are not protected by na-
tional drug laws or regulatory agencies.
Moreover, in an undetermined number,
and possibly the majority, of subjects
infected with Schistosoma hemnatobimn,
overt clinical and pathological mani-
festations disappear in adulthood (1).
This must be taken into account when
considering a drug for the mass treat-
ment of children whose life expect-
ancies are longer and whose reproduc-
tive potentials are greater than those
of adults. As was stated by Rubidge
et al. (2), "urinary tract bilharziasis is

15 NOVEMBER 1974
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a relatively mild disease in South Africa
and serious sequelae are rare. Hence,
therapy must be safe."

It is estimated that during the past 6
years, in Brazil, Africa, and the Middle
East, at least 700,000 human subjects
infected with S. heinatobium and S.
inanisonii have been treated with the anti-
schistosomal thioxanthenone derivative
hycanthone (the drug is ineffective in
infections produced by S. japonicuim
prevalent in mainland Chinia and the
Philippines) (3). Reports from a varie-
ty of laboratories have indicated that
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Fig. l. Mutagenic activity: none detec-
table (less than 0.1 percent as active as
hycanthone). Antischistosomal activity:
intramusctilar, 0.4; oral, 0.3.

hycanthone is mutagenic (4) and tera-
togenic (5), and that it induces pro-
phage (6), mitotic crossing-over (7),
cytogenic changes (8), and malignant
transformations (9); hycanthone is car-
cinogenic in mice infected with S.
inansoni (10). As pointed out by Firm-
inger (11), a report (12) which seem-
ingly did not support the last observa-
tion was based on such a small number
of animals that no significant negative
results could have been obtained. Since
a number of compounds chemically re-
lated to hycanthone exhibit antischisto-
somal activity, the question arose
whether structural alterations can bring
about a dissociation of undesirable
toxicological properties from chemo-
therapeutic activity. Data summarized
below indicate that this is the case.
A chloroindazole analog (IA-4, struc-

ture in Table 1) of hycanthone has the
same antischistosomal activity in mice
as hycanthone (13), while its acute
toxicity and its hepatoxicity are lower
(13, 14). Compound IA-4 failed to
induce demonstrable malignant trans-
formations in cells infected with Rau-
scher virus (9). Its mutagenic activity
was found to be lower in Salmnonella
(15), bacteriophage T4 (15), and
mouse lymphoblasts (16); no mutagenic
effects were detected in yeast (17); no
cytogenetic effects were detected in rat
bone marrow cells (18). Furthermore,
in contrast to hycanthone and to a num-
ber of chemical carcinogens, IA-4 failed
to induce breaks in rat liver DNA (19).
Another indazole analog (IA-3) had
lower antischistosomal activity; but
since there is decreased acute toxicity,
the chemotherapeutic index of IA-3
approximately equals that of IA-4 (13).
We found that chloro substitution in

position 8 produced a marked decrease
in the acute toxicity of the indazole
analogs for mice. For example, the
median intramuscular lethal dose
(LD5,) of IA-3 and of IA-4 was more
than seven times higher than that of the
corresponding deschloro derivatives.

In further studies of the effect of
structural modifications on antischisto-
somal activity and on mutagenicity, N-
oxides of active thioxanthenones and
benzothiopyranoindazoles were pre-
pared. The parent bases were oxidized
with in-chloroperbenzoic acid in dichlo-
romethane solution, and after chroma-
tography (AlM,03) the N-oxides so ob-
tained were converted to their water-
soluLble methanesulfonate salts. N-Oxi-
dation at the diethylaminoethyl group
consistently resulted in a marked reduc-
tion in mutagenicity for Salmonella

647

Hycanthone Analogs: Dissociation of Mutagenic Effects

from Antischistosomal Effects

Abstract. N-Oxidation at the diethylainiiino grouip of hycanthone, of lucanthone,
and of two chlorobenzothiopyranoindazoles resulted in a matrked reduiction in
mutagenic activity, while antischistosomnal activity was retained or even enhanced.
Introduction of chlorine into the 8-position of benzothiopyranoindazoles reduced
acute toxicity but had no effect on chemnotherapeutic potency. These dissociations
of biological activities indicate that safer antischistosomlal compounds of this class
can be developed.
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