# Parameters
max_time = 50
r = 0.4
K = 1
N = vector('numeric',length=max_time)
N[1] = 0.1
# Iterate model
for (t in 1:max_time){
N[t+1] = N[t] + r*N[t]*(1 - N[t]/K)
}
plot(N)
cod_pop <- c(1450, 1420, 1050, 2643, 1060, 1080, 1410, 1150, 740, 175, 43, 10, 12, 15, 16, 16, 28, 30, 32, 23, 12, 19, 27)
years <- c(1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992,
1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005)
par(mfrow=c(1,2))
plot(years,cod_pop,ylim=c(0,3000),las=1,ylab='Population (tonnes)',xlab='Time (years)',pch=16)
plot(cod_pop[1:(length(cod_pop)-1)],cod_pop[2:length(cod_pop)],ylab='N[t+1]',xlab='N[t]',las=1,pch=16)
mtext(text = 'Atlantic cod population - Canada',side = 3,line = -3,outer=T)
In order to increase fisheries yields, models of fish populations have been used. Two common models are Beverton-Holt and the Ricker. Here we will use the Beverton-Holt model with parameters a and b:
\[ N(t+1) = \frac{a N(t)}{1 + b N(t)} \]
You have two questions to address:
\[ N(t+1) = (1-h) \frac{a N(t)}{1 + b N(t)} \]